Теория вероятностей

Теория вероятностей

Есть три группы событий: достоверные, невозможные и случайные. Часть из них можно объяснить при помощи математики и других точных наук. В этом материале расскажем про теорию вероятностей, рассмотрим формулы и примеры решения задач.

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении четвертого задания на ЕГЭ. Начнем!

Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка. Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Событие и виды событий
Событие — это базовое понятие теории вероятности. События бывают достоверными, невозможными и случайными.

Достоверным является событие, которое в результате испытания обязательно произойдет. Например, камень упадет вниз.

Невозможным является событие, которое заведомо не произойдет в результате испытания. Например, камень при падении улетит вверх.

Случайным называется событие, которое в результате испытания может произойти, а может не произойти. Например, из колоды карт вытащили туза.

Обычно события обозначают большими латинскими буквами. Например, А — событие, при котором из колоды вытащили туза, D — событие, при котором из колоды вытащили семерку.

Несовместными называются события, в которых появление одного из событий исключает появление другого (при условии одного и того же испытания). Простейшим примером несовместных событий является пара противоположных событий. Событие, противоположное данному, обычно обозначается той же латинской буквой с черточкой вверху. Например:

A0 — в результате броска монеты выпадет орел;

Ā0 — в результате броска монеты выпадет решка.

Полная группа событий — это множество несовместных событий, среди которых в результате отдельно взятого испытания обязательно появится одно из этих событий.

Алгебра событий
Операция сложения событий означает логическую связку ИЛИ, а операция умножения событий — логическую связку И.

Сложение событий
Суммой двух событий A и B называется событие A+B, которое состоит в том, что наступит или событие A, или событие B, или оба события одновременно. В том случае, если события несовместны, последний вариант отпадает, то есть может наступить или событие A, или событие B.

Правило распространяется и на большее количество слагаемых, например, событие A1 + A2 + A3 + A4 + A5 состоит в том, что произойдет хотя бы одно из событий A1, A2, A3, A4, A5, а если события несовместны — то одно и только одно событие из этой суммы: или событие A1, или событие A2, или событие A3, или событие A4, или событие A5.

Примеров масса:

Событие \overline{B}=B_2 + B_3 + B_4 + B_5 
                                B  =B2 +B3 +B4 +B5

  (при броске игральной кости не выпадет 5 очков) состоит в том, что выпадет или 1, или 2, или 3, или 4, или 6 очков.

Событие B1,2 = B1 + B2 (выпадет не более двух очков) состоит в том, что появится 1 или 2 очка.

Событие BЧ = B2 + B4 + B6 (будет чётное число очков) состоит в том, что выпадет или 2 , или 4 , или 6 очков.

Умножение событий
Произведением двух событий A и B называют событие AB, которое состоит в совместном появлении этих событий. Иными словами, умножение AB означает, что при некоторых обстоятельствах наступит и событие A, и событие B. Аналогичное утверждение справедливо и для большего количества событий: например, произведение A1A2A3 … A10 подразумевает, что при определенных условиях произойдет и событие A1, и событие A2, и событие A3,..., и событие A10.

Рассмотрим испытание, в котором подбрасываются две монеты, и следующие события:

A1 — на 1-й монете выпадет орел;

Ā1 — на 1-й монете выпадет решка;

A2 — на 2-й монете выпадет орел;

Ā2 — на 2-й монете выпадет решка.

Тогда:

событие A1A1 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет орел;

событие Ā2Ā2 состоит в том, что на обеих монетах (на 1-й и на 2-й) выпадет решка;

событие A1Ā2 состоит в том, что на 1-й монете выпадет орел и на 2-й монете решка;

событие Ā1A2 состоит в том, что на 1-й монете выпадет решка и на 2-й монете орел.

Классическое определение и формула вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A.

Свойства вероятности:

- Вероятность достоверного события равна единице.

- Вероятность невозможного события равна нулю.

- Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Таким образом, вероятность любого события удовлетворяет двойному неравенству 0 ≤ P(A) ≤ 1.

Как решать задачи по теории вероятности
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Как рассуждаем:

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

P = 0/15 = 0

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Ответ: 0.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Как рассуждаем:

Вспоминаем основную формулу теории вероятности, которую мы привели выше. Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Следовательно:

P(A) = \frac{9}{36} = \frac{1}{4} = 0,25P(A)